Impact of in situ and satellite data assimilation on ocean circulation prediction system in Northwest Pacific

Inseong Chang¹, Young Ho Kim¹, Hyunkeun Jin², Young-Gyu Park², Gyundo Pak²

¹Division of Earth Envrionmental System Science, Pukyong National University ²Ocean Circulation Research Center, Korea Institute of Ocean Science & Technology

SynObs Kickoff 2022

© SPL / mediadrumworld.com

Introduction	Method	Result	Summary	Reference
Motivation				
Where is the he	eat generated by the Gree	enhouse effect?		
Where Does the Warmth Go	?	Where Does the CO ₂ Go?		
2.1% Continents 0cce 93 0.8%	Atmosphere 2.33% an 4.4% Glaciers & ice caps	CO ₂ emissions 100%	Atmosphere ca. 45 % Biosphere ca. 28 %	APE TRABGE CKMANN, DE ADDEMMATTAS 2017 SOURCE: GEDMAR
Arctic sea ice	Antarctic Ice Sheet		Ocean ca. 27 %	CC-B1-S

The ocean absorbs the lion's share of the additional warmth resulting from human CO₂ emissions, which supplements the natural greenhouse effect.

The CO₂ produced by people (i.e., in addition to natural emissions) is distributed as shown.

Introduction

Method

Result

Summary

Motivation

- Since SST is an important ocean variable that connects many processes such as the air-sea exchange of energy and the formation of water mass in the upper ocean, the SST observations have been widely used in ocean data assimilation. (e.g., Tang et al., 2004, Zhou et al., 2021).
- The assimilation of in-situ T/S profiles improves the density of sea water, especially assimilation of temperature directly affects ocean heat content.

The assimilation of SSH improves the performance of subsurface structure as well as ocean surface current.

Introduction	Method	Result	Summary	Reference
Motivation				
Ocean Heat Content	t Correlation	orrotion	DASK Climate Reanalysis by weakly coupled Data Assimi	applying lation
(a) DASK (b) The second secon	(U) DASK (with wind C)			Ocean D. Assim. (Kim et al.,2015)

ntroduction Method	Result	Summary	Reference
--------------------	--------	---------	-----------

Ocean prediction model

- System title : KOOS-OPEM (Ocean Predictability Experiment for Marine environment)
- Based model : GFDL-MOM5
- Domain : 5-63°N, 99-170 °E (Northwestern Pacific)
- Resolution : 1/24 ° x 1/24 ° (Arakawa B-grid) & 51 layers (z-star coordinate system)

	Data source	Variables	Temporal resolution	
		Temperature, Salinity		
Open boundary condition	GLORYS12V1	Sea Surface Height (SSH)	Daily	
		Velocity (Zonal, Meridional)		
		Air temperature		
	ERA5	Wind velocity		
		Air pressure	6-Hourly	
		Total cloud cover		
Cuufo oo fousin o fi ald		Specific Humidity		
Surface forcing field		Runoff		
		Net solar radiation		
		Net thermal radiation	3-Hourly	
		Total precipitation		
		Snow fall		

Table 1. Summary of Open boundary condition and surface forcing field

Introduction Method

Result

Data assimilation system

- Method : Ensemble Optimal Interpolation (Kim et al., 2015)
- Altimetry assimilation system : Cooper and Haines (1996, CH96)
- The number of ensemble members : 50
- Horizontal de-correlation length scale : 150km
- Vertical de-correlation length scale : 50m

$$\psi^a = \psi^f + K \left(d - H \, \psi^f \right)$$

Where ;

- $\psi^a = Analysis fields$
- $\psi^f = Simulated$ fields
- K = Kalman gain
- *d* = *Observations*
- *H* = *Spatial operator converting*

from the model data to observations

Introduction

Method

Result

A)

B)

Assuming bottom pressure conservation

Conservation of Potential vorticity

Bottom constraint

 $g \int_0^{-H} \Delta \rho \ dz = \Delta P s$

 $\Delta h = \frac{\Delta Ps}{g[\rho_0 - \rho(-H)]}$

✓ Creates a "Pseudo profile" using " Δh " and the "model's profile" at the specific grid

 $\Delta P \mathbf{S} = \rho_0 g \Delta \eta$

points

Cooper and Haines (1996, CH96)

Result

Experiment setup and observation

Table 2. Summary of the sensitivity experiment

Table 3. Summary of observations and errors

	Control variables	Experiment period	Observed variables	Data	Observation error	Assimilation window
CTR	-		in situ profiles	KODC (only temperature)	0.3°C	7 days
EXP01	SST		l i i i i i i i i i i i i i i i i i i i	WOD 2018	0.025 psu	
EXP02	SST, T/S profiles	1 year	Sea Surface	OISST	1°C	1 day
EXP03	SST, T/S profiles (+KODC)	(1993.01.01.~1993.12.31.)	(SST)	01051		i day
EXP04	SST, T/S profiles, SSH		Sea Surface Height	Along-track altimeter	0.9°C	1 dav
EXP05	SST, T/S profiles (+KODC), SSH		(SSH)	(50km subsample)	0.075 psu	

Figure 1. (a) Horizontal distribution of KODC observation stations used in this study.

Introduction	Method	Result	Summa	ry Referenc
Validation dat	a set			
Table 4. Summary of vali	dation data		Table 5. The metrics used to assess	the assimilation performance
Variables	Data		Metrics	Equation
T/S profiles	KODC WOD 2018		Root mean square error (RMSE)	1
SSH	CMEMS-GLOBAL OCEAN GRIDDED L4 SEA SURFACE HEI AND DERIVED VARIABLES REPROCESSED (1993-ONGOIN	IGHTS NG)		$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(m_i - o_i)^2}$
			Impact of data assimilation (IOA)	$IOA = \frac{RMSE_{CTR} - RMSE_{EXP}}{RMSE_{EXP}} \times 100$

RMSE_{CTR}

Figure 2. The distribution of in-situ temperature profile used in data assimilation and validation. (A) temperature profile used in data assimilation in February. (B) temperature profile used in validation.

Summary

RMSE of temperature/salinity profiles

	Control variables	Experiment period
CTR	-	
EXP01	SST	
EXP02	SST, T/S profiles	1 year
EXP03	SST, T/S profiles (+KODC)	(1993.01.01.~1993.12.31.)
EXP04	SST, T/S profiles, SSH	
EXP05	SST, T/S profiles (+KODC), SSH	

 \checkmark The assimilation of satellite altimetry data improve the temperature/salinity structure in most regions.

✓ The assimilation of KODC data improves the temperature/salinity structure in Kuroshio extension as well as East/Japan sea.

IOA of subsurface temperature/salinity (100~500m)

Result

IOA of subsurface temperature/salinity (100~500m)

✓ The assimilation of KODC data improves the subsurface of temperature/salinity in Kuroshio-Kuroshio extension.

Result

AVISO

EXP02

EXP04 EXP05

CTR EXP01

Representation of Kuroshio axis

Introduction	Method	Result	Summary	Reference
RMSE for latitude of Kurd	oshio axis			

 \checkmark The assimilation of satellite altimetry data and KODC data improve representation of Kuroshio axis

The monthly mean temperature and current speed

25 [°C]

Summary

- The assimilation of SSH improves the subsurface temperature and salinity in most areas.
- The assimilation of KODC profile data improves the surface and subsurface features in the Kuroshio Kuroshio Extension area as well as in Korean marginal seas.
- In particular, KODC profiles have contributed to improving representation of Kuroshio axis.
- It is important to predict the Kuroshio-Kuroshio Extension more accurately because the Kuroshio Extension system is an important component of the global climate system, particularly in the North Pacific basin.
- This study suggests that greater attention should be paid to the role of the regional ocean observing networks to improve the ocean and climate prediction skills in the open ocean such as Pacific as well as the region.

From http://www.atmos.rcast.u-tokyo.ac.jp/hotspot/eng/organization/a03_8.html

Introduction	Method	Result	Summary	Reference
Reference				

- Arthur Vidard et al (2009), Assimilation of Altimeter Data in the ECMWF ocean Analysis System 3, Monthly Weather Review, pp.1393 1408
- Mike Cooper and Keith Haines (1996), Altimetric assimilation with water property, Journal of geophysical research, Vol.101(C1), pp.1 059 1077
- Peter R. Oke, Observing system Evaluation (2008), GODAE Final Symposium, Nice, France, 12-15
- Young Ho Kim et al (2015)., An assessment of oncea climate reanalysis by the data assimilation system of KIOST from 1947 to 2012, Ocean Modeling,01,1-22
- Young Ho Kim et al (2009), Comparison between a reanalyzed product by 3 dimensional variational assimilation technique and observations in the Ullenung Basin of the Eas/Japan sea, Journal of Marine Systems, pp 249 264
- Helber, R.W., T.L. Townsend, C.N. Barron, J.M. Dastugue and M.R. Carnes, 2013: Validation Test Report for the Improved Synthetic Ocean Profile (ISOP) System, Part I: Synthetic Profile Methods and Algorithm. NRL Memo. Report, NRL/MR/7320—13-9364.
- Chamberlain, M. A., Oke, P. R., Fiedler, R. A. S., Beggs, H. M., Brassington, G. B., and Divakaran, P. (2021). Next generation
 of bluelink ocean reanalysis with multiscale data assimilation: Bran2020. Earth Syst. Sci. Data 13, 5663–5688. doi:
 10.5194/essd-13-5663-2021

Thank you

SynObs Kickoff 2022

© SPL / mediadrumworld.com

SynObs Kickoff 2022

© SPL / mediadrumworld.com